Tuesday, 3 October 2017

Albert Einstein and the Theory of Relativity - A Science Outreach Course at Strathclyde Unversity, and East Kilbride


Today, we celebrate the award of Nobel Prize for the detection of Gravitational Waves (GW) to Rainer Weiss of MIT, Barry Barish and Kip Thorne of Caltech.  Along with Ron Drever (1931 - March 2017), they were the founders of the Laser Interferometer Gravitational-Wave Observatory (LIGO) which detected GW for the first time in 2015.
Almost 100 years ago, Einstein's general theory of relativity had predicted that some of the energy of violent astrophysical phenomena would radiate out gravitational waves but the detection of GW has been difficult because  the size of disturbance GW would produce at the Earth is very very small.  Instruments in Washington State and in Louisiana simultaneously observed GW signals originating from two massive black holes spiraling to become one some 1.3 billion years ago! It is estimated that three solar masses were converted into GW in less than a second.

The VIDEO  How to detect gravitational waves - LIGO Simply Explained  is worth a look too.  It does a great job of explaining the operation of the LIGO instrument in three minutes.

This week a third interferometer (called VIRGO) in Italy was involved with LIGO to observe another GW signal and it seems that GW detection is ready to take off as a completely new way of observing some unique features of the Universe.

Indirect evidence for gravitational waves has been available since 1974 when Taylor and Hulse observed energy lost in a binary pulsar system.  Binary pulsars are two neutron stars rotating round each other - according to the theory of general relativity they will radiate energy in the form of GW and this can be estimated by the change in their rotational energy. 

More on Gravitational Waves may be found here


********************************************************************************

In the following I provide links to my talks at the Life Long Learning Centre at the University of Strathclyde and also at East Kilbride James Watt Auditorium.  The talks are suitable for most people with a school background in science and were prepared to celebrate Albert Einstein's life and work.  
Please click on the lines below to see the slides of the talk


Special Theory of Relativity (Part 1) - a Course for the 'Inquisitive' Layman






Einstein arrived at the scene when physics was going through a difficult time.  Classical Theory was very successful in describing the world around us but there were some really serious problems where the classical theory failed completely in a way that was quite fundamental.  A new way of looking at things was needed - Einstein's theories of relativity and quantum mechanics provided that.  In the following I describe Einstein's early life and some of the problems with classical physics.  This material is provided to supplement the four talks on the Special and General Theories of Relativity.

Albert Einstein Early Life 1879 to 1905


















Monday, 2 October 2017

Index of Blogs 2012- 2017


Please click on this link to see 
the Index of blogs 

Please click on this link to see 
the Blogger Profile 



http://ektalks.blogspot.co.uk/2015/11/blogger-profile-ravi-singhal.html

http://ektalks.blogspot.co.uk/2017/10/blogger-profile-about-me-my-name-is.html


Sunday, 1 October 2017

Blogger Profile - Ravi Singhal


About Me:

My name is Ravi Singhal.  I am a physicist who retired from active research in 2006.  
I graduated from the University of Lucknow, India with an MSc in physics in 1964; and in 1970, I completed my PhD in Nuclear Physics at the University of Saskatchewan, Saskatoon, Canada.  I have been in Glasgow, Scotland since 1970 teaching and doing research at Glasgow University. 
Currently, I am an Honorary Research Fellow in the School of Physics and Astronomy at GU. 
My research interests have covered nuclear and laser physics and I have published nearly 200 research papers in peer reviewed journals.  
After my retirement in 2006, I started 
a community education forum called 
Science for All with the express aim 
to reach the adult population in areas 
in Scotland.  

In the past few years, my emphasis has shifted more to writing blogs.  I do, however, give talks by invitation at various forums.  I do not charge a fee for giving talks and endeavour to achieve the maximum audience.

About the Blog:
My blog has been active for the past ten years.  The whole thing started with my retirement in 2006 after 36 years at Glasgow University teaching physics and researching first in nuclear then lasers and back to a kind of synthesis of laser induced nuclear.  Research was exciting but teaching environment was not.  Retirement option came as a breath of fresh air with all the free time to do whatever I wanted.  Academic research, by its very nature, must concentrate in a narrow specialization which is good in some ways as this brings research grants and ensures survival.  The downside is that with all your time taken up by work and family, there is nothing to spare to keep up with the excitement of new things that have been happening in biology, digital sciences and everything else.  For a few years I had been feeling that there must be a better option - 40 years of research and 200 odd papers behind me, I felt that it was time to move on and open my eyes to the wider world of science and technology and everything else.
Several decisions were made on retirement:

1. I will publish research papers no more (what for?)
2. I will not attend a meeting (waste of time!) to ask for funding my activity
3. I shall not seek remunerative employment (it shackles you!)
4. I shall not tolerate nonsense from anybody (I am not looking for employment)
5. I will do my best to educate the community (selfish act - read below)

I did stick to all the above decisions. This last point was really one of the most selfish decisions that I have made. Let me explain: It is difficult to learn and retain knowledge about things that you do not have a good background in - simply because after a short period, may be a couple of months, you forget most of what you read.  The only way that I know is to teach.  When you teach a subject, you have to understand it properly and then you keep it with you for a long time.  This is what I had to do.
But who do you teach to? I had felt for a long time that the rapid progress in science and technology was creating a two tier society.  People who understand science and those who do not and for that reason are unable to even start to catch up.  This situation had existed for ever so why worry about it now?  The reason is that Science and Technology (ST) rules our lives far more now than it ever did before and things are going to get much much worse.  The new gadgets work like magic for most people and by and large they are happy to use and enjoy them. With little or no understanding of how things around them work, the vast majority of the population leave themselves open to exploitation  - by the few who control the technology.  I consider the new gadgets like drugs that intoxicate by their effect on you and leave you vulnerable to manipulation and control by others.  It is like we are sleepwalking into creating Huxley's Brave New World or worse -  we are more or less there already.

Historically, ST progressed slowly and concentrated on alleviating the hardships of daily grind.  That stage passed more than half a century ago and what we have now is an ever-increasing rate of technological advancement.  The general population might see this as a good thing that makes life more comfortable and enjoyable but slowly and surely we are seeing a shift in power in the hands of fewer and fewer individuals.

Educating the communities about ST is not straightforward.  Old science was based on common sense - you throw a ball towards a high wall and it bounces back to you.  The new science traumatizes common sense - the ball sometimes leaks through the wall on to the other side!
Our education system has taken no heed to the new reality and at age sixteen, children have learnt hardly anything about the new sciences or in many cases any science at all.  This needs to change otherwise we shall be creating a large population of Huxley's deltas and epsilons. 
Apologies for digressing - I had thought that on retirement I would teach science to the communities and with some help from Glasgow University started my ScienceforAll programme of free community talks on all sorts of subjects.  The hard work has been successful in teaching me new science but I have only been able to reach a very small audience and have to find a new way.  The first step is to publish the talks on my blog so that they are available to all.  This I am doing via my blog.  To keep track of ST in 21st Century, I endeavour to publish new research in biological, nanotechnology, robotics and artificial intelligence here - when time allows.  ST in 21st Century will affect life in many ways - our existing legal, social, cultural, religious and other structures will be totally inadequate to deal with consequences engendered by the new ST and the speed of change will be phenomenal.  How we can cope with this is not something I (or for that matter anybody else) has an answer for; but talking about it will be useful.

I am really interested to hear your views about matters relating to science.  

Please feel free to contact me on   ektalks@yahoo.co.uk

http://ektalks.blogspot.co.uk/2015/11/blogger-profile-ravi-singhal.html

Friday, 22 September 2017

Disruption of Fossil Fuels by Renewable Energy will Mitigate the Most Severe Effects of Climate Change - Talk at Glasgow University


Summary:  Climate Change is one of the great challenges of the 21st century.  Emissions of greenhouse gases (GHG) from the combustion of fossil fuels (FF) have contributed greatly to climate change.  A transition to non-carbon emitting renewable energy (RN) will help to mitigate its most severe impacts. Historically, disruption (substitution) of existing energy sources by new ways of generating energy have delivered huge benefits to the society.  Economic viability of the new sources has been a prerequisite for successful disruption. Renewables - particularly Solar and Wind energy  - are reaching technological maturity, and in many cases can now compete with fossil energy in cost terms.  I shall review the current status of climate change and claim that for the next three decades most energy will still be produced by burning FF.  Substitution of FF by RN is gathering pace and I shall discuss a technology substitution model to demonstrate how a disruptive innovation (renewable energy in our case) replaces an established incumbent.  
*********************************************************
The Stone Age did not end because we ran out of rocks.... The era of extraction-resource-based energy sources (oil, gas, coal and nuclear) will not end because we run out of petroleum, natural gas, coal, or uranium. It will end because these energy sources... will be disrupted by superior technologies, product architectures, and business models.
                                         ...Clean Disruption by Tony Seba
“We are now hitting a crossover point where solar, without subsidies, is starting to beat out all other sources of energy.'                                        ...Ramez Naam, Energy Analyst
************************************************************
Our planet has been warming - most scientists believe it is due to the additional carbon di-oxide we are putting into the atmosphere.  Actually the CO2 levels are higher now than they have ever been over the past half million years.


Ice ages happen when the mean global temperature drops by about 5C from what it is now.  There is a good likelihood that by continuing to burn FF as we do now, by the end of the 21st century, global temperatures could rise by 4 or 5C.  This will fundamentally change how the Earth will look (next slide).  Vast areas will turn to desert - how will we feed 10 billion people then? - not to mention relocating billions of people due to sea-level rise and droughts.   


We produce most of our energy by burning FF.  This is not going to change in the near future.  In fact the projections suggest that FF consumption will increase by a third in the next 25 years putting even more CO2 in the atmosphere and aggravating global warming.  These projections take us firmly towards an expected warming of 4 or 5C by the year 2100.

Another interesting observation is that about 25% of the CO2 produced is absorbed in the oceans. This makes the oceans more acidic -- the extra acidity affects the formation of shells and we might be reaching a stage when it is having a real effect on life in the sea.  


Essentially, we are stuck in the situation that even though it is clear what needs to be done to reduce emissions; a technology to replace FF, in a big way, is still not available.  RN - Solar and Wind energy - are reaching maturity and are ready to take off.  They are intermittent sources of energy and really require a way to store generated energy so that it is available when needed. Sufficiently good storage options are still not available and soon this might restrict the adoption of RN energy to replace FF.
For RN to be able to replace FF, it is necessary that they are economically attractive.  This is indeed happening and both Solar and Wind energy costs have fallen enormously over the past 30 years and they now compete very well with energy produced by coal and natural gas. In fact if one factors in the cost of removing CO2 from the atmosphere then FF energy turns out to be very much more expensive than Solar or Wind energy.    




Let us look at a simple model that describes very well the substitution process of an incumbent technology by a disrupting technology.  The model (Fisher Pry model) is of general applicability and points to a common process by which disruption builds up in time.  





Fisher Pry model (1971) considers that the fractional rate of change of the market share F of a disruptive technology is proportional to the remaining market share (1 - F); the total market size is fixed (at unity in our analysis).






It is fascinating that such a simple model describes disruptive processes in a large number of diverse technologies with a single parameter.  This points to some basic process that determines the adoption of the disrupting technology in the society.  It is actually modeled as a diffusion process.  The diffusion proceeds through certain communication channels and transmits the benefits of the disruptor technology relative to the existing way of doing things.  Next four slides describe the situation:




In recent times, social media has made communications in the societal context much more efficient and this has reflected very strongly in the speed with which DI has spread. I show a few examples to demonstrate this feature:



In fact, the last slide says that by 2038, ownership of electric vehicles will surpass internal combustion engine ownership.  Big batteries in electric vehicles will provide excellent opportunity for storing energy produced by solar and wind energy sources. This can more or less solve the storage bottleneck that RN disruption faces at present.

Another significant feature of RN is the production of energy - particularly solar - can be at individual house levels.  In many places in the world, individual houses can generate sufficient energy to be self sufficient.

Final Word:  With  CO2 levels increasing every year, it is depressing to watch the possibility that global warming will hit dangerous levels (many scientists think that a 2C rise in global mean temperature is such a threshold).  May be it is already too late to avoid this.  RN energy is our main hope of substituting FF use on any sensible scale.  Once solar and wind energy market share reaches 10 to 15%, disruptive process could accelerate immensely and increase in CO2 levels could be controlled and in fact reversed using carbon capture technologies etc. 
PS:  A recent study by Mark Jacobson et al. points to a roadmap to switch most electricity generation to renewable energy by 2050.  I refer you to their publication and show the way things could turn out:


Tuesday, 24 January 2017

Arctic Ocean - Soaring Temp., Loss of Ice Cover - How Much and Why? What is the Future? A Community Education Feature

Blog Index - Blogger Profile      Category - Climate Change

(please click on a slide to view its full page image -
 Esc to return to main text)

Global temperatures are rising - 2016 was the warmest year in two centuries.  But Arctic Ocean is warming much faster than the rest of the planet.  I want to look at the science behind this to understand why?  First the evidence:
Global temperatures have risen over the past 200 years. The following slide shows the temperature trends.  Data is expressed as temperature anomaly - this simply means that the average temperature between the years 1950 and 1980 is taken as the reference temperature.  Temperatures in other years are measured relative to this reference value.  



A couple of things to note in this graph:  Year to year variation (the weather) can be quite significant but the trend over a few decades (the climate) point to a warming world - about one degree hotter now than it was 100 years ago. Different regions of the globe warm at different rates - the equatorial regions have warmed slower than the Arctic Circle. Mean temperature change in Antarctica has been even less. This is shown in the next slide:



A consequence of warming is that the Arctic ice extent is diminishing - satellite data has mapped this accurately since 1978.  It is not only how many square kilometers the ice covers that matters, the thickness and age of the ice is also very important.  In the Arctic, temperatures rise above freezing during the summer months and some ice melts.  In the winter, water freezes to increase the amount of ice present. Snowfalls also deposit fresh snow during the cold months extending ice cover in the Arctic.  With age, snow compacts into harder ice that melts more slowly.  That is why the thickness of ice sheet is also important in determining the changes in the extent of ice cover (volume of ice) from the summer to the winter in any year. The loss of old compacted ice in the Arctic has been catastrophic: 

The volume of ice is obtained by multiplying its thickness by ice covered area and is a direct measure of total ice present. The following slides show how these parameters have been changing over the past 40 years.  The first slide shows the area covered in ice (old and new) and how this changes over the course of the year.  Other slides show the volume of ice and how it has changed since 1979.

          Changes in the Volume of Arctic Ice 

The graphs show that loss of Arctic sea ice has been equivalent to 3000 km3 per decade.  Put it another way, Arctic has lost over 12 trillion tons of ice since 1980!  (1 km3  ice weighs a billion tons). Molten ice converts into water - in the Arctic, the ice is floating on water already and melting does not affect the sea level. It is the ice that is located on solid ground - mainly on Greenland - that on melting, will add new water to the ocean and result in sea level rise.  The ice sheets in Greenland are relatively stable (although they have been losing ice at a rate of 140 billion tons per year).   However, parts of the glaciers that are sticking out beyond land are in contact with warmer sea water and are melting faster and also moving faster.  Loss of such glaciers will take away the blocking effect on the movement of glaciers further inland and will accelerate their journey to the sea. This is expected to happen in due course, but not imminently in the next few decades. 

The energy required to melt such large quantities of ice is enormous and is supplied by the redistribution of energy that the Sun radiates on our planet. Vast quantities of solar power reaches Earth's surface - 164 W/m2 averaged over 24 hours. Equatorial regions receive most of the energy but this gets redistributed to polar regions by atmospheric and ocean currents.  

As part of the natural annual cycle, about 16,000 km3 of ice is lost every year from April to September in the Arctic sea.  
Taking the density of ice as 1000 kg/m3, the mass of ice lost per year is 16 x 1015 kg.  
The latent heat of ice is 333 kJ/kg – it takes 333 kJ of energy to melt 1 kg of ice.
Energy required to melt the arctic ice is 333 kJ/kg x 16 x 1015 kg = 5.33 x 1021 Joules.
For comparison, the U.S. Energy consumption for 2009 was about 1 x 1020 J.  It takes about 50 times the annual U.S. energy consumption to melt the Arctic ice every year.

The loss of sea ice due to warming Arctic was estimated as 300 km3 per year which is equivalent to about 20% of ice lost annually between April and September - this means that a fifth of the ice lost in the summer is no longer replaced in the winter months. This corresponds to 1021 Joules of energy absorbed by the Arctic sea from the atmosphere and the ocean currents. This energy is stored in the water and goes to raise the temperature of the sea.

Let us look at the science to understand why the Arctic has been warming up faster than the rest of the Globe. Global climate is determined by a complex interaction of many processes.  To change a huge system over a period of time, some type of positive feedback mechanism is generally required - something that takes the system away from a condition of stability to a new condition (1, 2, 3). 

In positive feedack, a small change in one parameter causes other changes which then amplify the magnitude of the original change.  This step is repeated to make the overall change significant. 

I describe the processes that might be responsible for Arctic warming in the following. 

1.  The Albedo Effect: It is a classic example of positive feedback operating in the climate system.  See also.


















Arctic ice is highly reflective and sends a good fraction (about 90%) of sun's energy back into space. On melting, ice is replaced by darker looking water which reflects less light (5 to 10%) and absorbs more of the incident energy causing additional warming. This warming then melts even more ice which then results in still greater absorption of solar energy. And so the cycle goes on, feeding on itself. 


We can make a rough estimate of the extra heat energy that a change in albedo might deliver to the Arctic sea.  
Melting of the ice causes a loss in albedo from 0.9 to 0.1 - a reduction of 0.8 (instead of 90%, only 10% of incident solar energy is reflected to space). 
The amount of solar power falling per square meter in the northern latitudes is about 15% of that near the equator or 23 W/m2
The energy received by the sea over four summer months is  23 W/m2 X 0.8 X (4 X 30 X 24 X 3600) seconds = 2 X 108 J/m2
From measurements of ice extent (see slide), each summer 107 km2  (or 1013 m2) of arctic ice is changed to water.  Over this area, change in albedo traps 2 x 1021 J energy into the sea water.  
This is within a factor of 2.5 of our estimate of the energy required to melt the ice in the summer months.  It seems to me that the albedo effect is responsible for the loss of a good part of sea ice in the Arctic.  With positive feedback, as more of the sea ice disappears, the albedo effect will cause even greater ice loss in successive years.

Burning of fossil fuels produces black soot which is carried by winds to the Arctic.  The soot in the atmosphere increases absorption of solar light further warming the region.  Some soot precipitates on the ice and darkens it.  Darkened ice has lower albedo - less of the sunlight is reflected, increasing warming.


2.  More water vapour in the Arctic Atmosphere: As the temperatures in the Arctic have risen, more water vapour is present in the atmosphere.  Ice has very low vapour pressure and there is little water present in the atmosphere over areas covered with ice.  With ice melting into water, the amount of water vapour in the atmosphere will increase.  As it happens, water vapour is a potent greenhouse gas that is effective in absorbing the higher wavelength infrared spectrum emitted by the Earth and not absorbed by carbon dioxide. Higher moisture levels will thus trap more of the heat radiated from the Arctic and prevent it from escaping into space. Following two slides describe the potency of various greenhouse gases:



Increased amounts of water vapour and carbon di-oxide in the atmosphere also trap reflected energy.  Trapped energy goes directly into heating the atmosphere and not in evaporation (as is the case at lower latitudes).  This causes Arctic air temperature to increase faster than in the rest of the globe.
An interesting bye-product of reduced ice cover in the Arctic is the higher vapour pressure of water which can result in increased snowfall during the winter months.

3. Stronger Thunderstorms are Transporting More Energy to the Arctic:  Research at NASA points to the excess amount of energy that is being transported to the poles by large weather systems.  Even though the frequency of thunderstorms has not increased, they are stronger and bring lot more energy to the polar regions.   Obviously much more work is required to quantify this effect but it is felt that this may be quite important.

Future Evolution of Arctic Sea Ice Extent:  Max Plank Institute has modeled the evolution of Arctic sea ice area. The model finds that Arctic temperatures and sea-ice area depend directly on global carbon di-oxide concentration. Their results are shown in the next slide:
The summer ice cover is lowest in September and the model predicts that Arctic will be ice free when the mean temperatures in the 60 to 90 degree latitude North reach above 5 degrees centigrade and this might happen for CO2 concentrations of 700 ppm.  The winter ice cover will vanish for CO2 concentration levels of 1500 ppm or higher.  

Some consequences of above-normal Arctic Warming: 

Arctic Circle climate is an integral part of the global climate system and the more extreme changes in the Arctic Circle will affect the climate of the world.  The impact of a warming Arctic has been the subject of an extensive report that is available on the Web.  I refer you to the report for a detailed (146 pages) analysis.  In the following I discuss a few points only.

Changes in northern hemisphere climate:  Arctic temperatures are rising at least twice as fast as other regions of the Earth and causing accelerated loss of Arctic sea ice  - in extent, thickness and age.  This will influence atmospheric and ocean circulations and weather, particularly in the northern hemisphere.  The temperature and rainfall patterns shall change, and their effect on forests, agriculture, water supplies etc will be significant. 

Gulf Stream:  Gulf stream brings warm saline water from the tropics to the north. Melting ice and increased river run-offs have added large quantities of freshwater to the North Atlantic ocean.  This reduces the salinity and hence the density of sea water.  It is likely that this will affect the ocean circulation pattern with major impact on the climate of regional areas - for example - Gulf Stream might change course or stop completely ushering severely cold temperatures to northern European countries.

Permafrost: For thousands of years, permafrost (frozen soil) and wetlands in high northern latitudes have stored vast amounts of carbon - they cover 9% of the land area but contain 25 to 50% of world's organic carbon.  With warmer temperatures, permafrost will start to thaw and release carbon into the atmosphere as carbon dioxide and methane - two potent greenhouse gases.  This can set up a positive feedback loop and contribute significantly to an accelerated global warming.  Most climate models do not include permafrost thawing in their calculations. 
Permafrost's southern limit is expected to shift several hundred kilometres by the end of this century.
Thawing of permafrost will weaken frozen coastal lines, increasing coastal erosion by the rising sea-levels.
Vegetation will start to cover thawing permafrost in due course - it will be less reflective and increase warming.  However, new vegetation will absorb more carbon di-oxide from the atmosphere counteracting some of the warming.

Thawing of the permafrost will change the hard solid ground to soft marshy land.  Buildings, bridges, roads built in the region will be destabilized and will have to be redesigned and replaced.  This will be disruptive for the locals and very expensive.

Ocean Acidity:  Oceans have been absorbing vast quantities of carbon dioxide from the atmosphere and acidity of the oceans has increased by 30% in the past 100 years. Cold oceans absorb more carbon dioxide - Arctic is acidifying twice as fast as the rest of the oceans.  Acidic water dissolves calcium carbonate, and therefore interferes with the development of coral reefs and the shells of see animals like oysters, crabs, snails, plankton etc.

Sea-level Rise:  Melting of arctic sea ice does not affect sea levels.   However, ice sheets in Greenland have been losing water at increasingly higher rates.  Historically, when the temperatures were as warm as they are today, sea levels had settled at much higher levels than at present.  I hope to look at this question in a future publication but the following slide shows the effect on coastal areas due to the expected sea level rise sometime in the future.  If global warming continues unabated then the situation could be much worse.




http://www.greenfacts.org/en/arctic-climate-change/figtableboxes/surface-reflectivity.htm







.

Sunday, 15 January 2017

The Third (+ Fourth ??) Industrial (Technological) Revolution; Globalization, Global Poverty & Inequality

Blog Index - Blogger Profile      Category - Self-indulgence

Technology is the application of science to solve a problem, create tools and processes. 

Technology is the purposeful application of information in the design, production and utilization of goods and services, and in the organization of human activities.  


(please click on a slide to view its full page image -
 Esc to return to main text)

Humans have used technology for over 5000 years - I would even say that advancements in technology have always benefited the way we live. Energy (a system's ability to perform work) has been the key in this regard.  A gallon of petrol costs £5 and provides energy equivalent to 500 hours of human labour worth £3700.  In other words, the amount of work that oil performs for you is equivalent to having hundreds of slaves working round the clock! Even the kings did not have the comfortable & luxurious life style that an average middle class family now enjoys - thanks to technological breakthroughs that made all this possible.

Technology evolves incrementally except on occasions when some breakthrough (generally, the availability of a cheaper & more efficient source of energy) engenders a quantum shift in our capabilities. This can create a big improvement in the way we live - an industrial revolution (IR). For example:

1784:  Water and steam power helped to mechanize production - First IR

1870:  Electric power made mass production possible  - Second IR

1970:  Electronics, information technology allowed automated production  - Third IR 

Now, a fourth Industrial Revolution is building on the third.  It is characterized by a fusion of the physical, digital and biological technologies. The fourth IR will fundamentally alter the way we live, work and relate to one another.  In its scale, scope and complexity, the transformation will be unlike anything humankind has experienced before. Technological capabilities are increasing exponentially - changes are happening at unprecedented speed throughout the world - changes that are disrupting all industries in every respect. Transport, communications, efficiency and productivity in manufacturing will benefit and steer economic growth. 
All aspects of peoples' personal lives will be impacted seriously with unforeseen consequences for privacy, identity etc.     
Automation will disrupt the job market, many occupations will go as robots can perform them better - we already see industrial robots becoming more ubiquitous - but the changes in the next few decades will be far-reaching.  
Our civilization has a big task ahead of adjustment to the looming challenges.

Who will gain from the technological advances? 
Will the richest in society grab all the benefits as they are best placed to exploit the situation? 
Will inequality increase in the world? 
Will the poor be looked after and their standard of living improve? 

We do not know the answers. In the rest of this blog, I shall examine how things have changed over the past several decades and address the issue of global poverty and inequality.   In this endeavour, I have been guided by extensive data in reports from the World Economic Forum, World Bank and other prestigious institutions.  But first let us define what a benchmark for poverty is and how inequality may be understood.  Defining poverty and inequality is no mean task but let us try this in the following slides: 



The third IR really made a difference.  Technology behind this IR made transportation of goods and communications exceedingly efficient.  Developing countries in Asia and Latin America could produce all the goods and provide lot of the services that the OECD countries wanted and they could do it rather inexpensively - the labour was cheap.  The result was that the period from 1970 onward saw a massive increase in manufacturing and services transferred to countries like China and India and others.  Globalization became established and benefited the indigenous populations in the developing countries. Their incomes rose and poverty levels came down.  
The following slides, adopted from Ref. show how income levels changed in China and the USA between 1970 and 2006:  


The next two slides show how the world distribution of income has changed since 1970 and that the absolute number of poor people has been decreasing steadily over the years against the backdrop of a rising world population. This is mainly due to the large number of people taken out of poverty in China and India and neighbouring Asian-Pacific countries. In the slide, y-axis shows number of people.


It appears that since the onset of the third IR, globalization has been instrumental in decreasing poverty throughout the globe.  This is a positive outcome of technological advancements that have also helped to provide greater understanding of human health issues and tackling the food and water problems.  Much more needs to be done in this respect - particularly in the African continent where people have not benefited anywhere near to the same degree by globalization.  Of course, the industrial progress have had many negative impacts like global warming (climate change), increased pollution, mass migration, loss of biodiversity etc. These problems must be addressed with some urgency.

Returning to inequality, we are talking about economic inequality here, can one argue that reducing inequality should be a major goal of policy makers?  There does not appear to be a strong positive correlation between poverty (income levels) and inequality - rising incomes take people out of poverty but generally enhances inequality.  It is reasonable to suggest that inequality  would enhance political instability & social unrest; thus impacting negatively on economic growth.  On the other hand, inequality could spur more economic growth via higher incentives for wealthier people to make productive investments - as indeed most of the wealth is owned by a small percentage of the population.
OECD data show that historically there has been a negative correlation between inequality and economic growth within nations in Europe and the OECD countries in the Americas. Following slides look at the trend in inequality and demonstrate how unequal the world is:
The World Gini increased from 0.43 in 1820 to 0.61 in 1913. Since 1913, Gini has been creeping up and stands at 0.68 in 2005.  


See Also:

Unintended Consequenses of Globalization:  During the 3rd IR, good efficient transport (energy has been cheap) and communications have helped the rise of globalisation. Goods made in developing countries - supported by low wage rates - could be transported to consumers in the developed countries.  Out-sourcing of manufacturing and services has helped in reducing the poverty levels in developing countries. In this process, middle classes in the developed countries saw their jobs in manufacturing and servicing disappear causing stagnation of real wages and escalating job insecurity. The following slide shows  this remarkable situation over the period 1988 to 2008.  
First, I explain the way data is generally broken into sub-divisions or quantiles:
Global income growth is shown for the 20 income ventile groups (Global population is divided into 20 groups). The first ventile (0 to 5%) are the lowest income group; the second ventile (6 to 10%) is the next lowest group and so on. The 20th ventile (96 to 100%) is shown by dividing it into a quartile (96 to 99%) and a percentile (99 to 100%) to emphasize how much more the richest in the top 1% have gained.


The distribution shows that the groups around the 50th percentile made the largest gains, ~75%, in income growth. The global top 1% also increased their incomes by about 65%.  For the very poorest (0 to 5 percentile) and those around 80 to 90 percentiles, gains were negligible over the period of 20 years. Because the absolute income of the top 5% is much larger, they accounted for 44% of the increase in global income between 1988 and 2008.


People are apprehensive about job security and fear that automation/robotics will make a large fraction of jobs redundant. Of course, new job opportunities will appear.  This will require retraining which may be uncomfortable for many. In addition to automation, migration is also a big concern.  Migrant workers generally are younger, work harder and show more flexibility.  Under these circumstances, workers in the developed countries feel thtreatened and have started to react to the prevailing uncertainties.

I am not surprised that the attitude towards globalization is not positive in most countries.  In a 2015 YouGov poll, majority of people thought that life was better in the old days.

The situation is much worse than described above

I have discussed the evolving economic situation in the world and tried to make sense of some recent political developments in the Western countries - notably UK and USA.  While it is true that economic climate drives many of the social and political trends in a country, it may no longer be the whole story.  Technological developments have infiltrated personal lives of citizens in a serious way; social media, smart phones, internet have been widely adopted and life without them is unimaginable.  Gadgets now play an important part in setting the cultural norms in a society.  What information is delivered to you is not under your control any more - the online service providers decide.  Who controls the service providers?  A handful of companies indeed.  These companies wield huge power by influencing the way we think.  Controlling information is subtle and is nothing like the historic way of doing so as practiced in totalitarian regimes. Your personal profile determines what information should be sent to you.

Final Word:  Economic poverty and inequality have received much attention by policy makers.  Extreme poverty is much reduced globally but inequality has been creeping up.  There is more to life than income and wealth.  After a certain stage, money loses its charm and people search for other attributes in the society - like social inclusion and fairness.  Happiness is not determined by GDP alone.  
Taken to extreme, total equality (Gini = 0.0) will be most undesirable. The policymakers have a daunting task to first decide on the parameters that make life fulfilling and then devise policies to achieve those goals.  

Love to hear from you - write to ektalks@yahoo.co.uk